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Computational instabilities inherent in the solution of inviscid, incompressible
free-surface flow have been apparent for some time and different techniques have
been used to overcome them. In this paper we attempt to explain why these instabil-
ities occur and in doing so, a method is developed to study the spatially semi-discrete
eigenvalues and eigenvectors which govern the stability of the system. It is found
that the asymmetric spatial discretisation of the fluid domain causes the instabilities.
After mechanisms for stability are recognised and implemented, unsteady, invis-
cid, incompressible, linear and non-linear free-surface flow is simulated using a
hp/spectral element code, ensuring fast convergence, which incorporates arbitrary
Lagrangian—Eulerian (ALE) techniques to decrease deformation of the computa-
tional mesh. © 1999 Academic Press
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1. INTRODUCTION

The linear, free-surface motion of an inviscid, incompressible fluid has been sol
exactly for simple finite depth water waves, e.g., travelling and standing waves [17]
analytical approximation techniques have enabled the solution of more complicated li
and low order non-linear systems [27, 20]. Numerical techniques have allowed the solt
of non-linear free-surface motion commonly involving submerged complex geomet
[35] and also surface piercing structures [1]. The finite element technique, in partict
has been found to be very efficient in the solution of free-surface problems [1, 34] and
newhp/spectral finite element technique is capable of very rapid convergence rates [9,
which coupled with the ability to handle complex geometries [26, 5] make it a worthwh
tool to aid the simulation of gravity waves.

A common theme with most of the finite element computations is the use of a smo
ing technique to inhibit the formation of the free-surface saw-tooth pattern, which
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FREE-SURFACE FLOWS 27

characteristic of an unstable system. Though this phenomenon has been widely note
non-linear flow few have attempted to investigate or explain it. Longuet-Higgins and Cok
suggested it was due to the “physical growth of short gravity waves by horizontal comp
sion of the crests of longer waves” [13] and proposed that these would be realistic
damped by viscosity. They developed a five-point smoothing formula which takes adh
tage of the fact that alternate nodes on the free-surface form smooth curves and whi
now widely used [34]. Moore [15] and Roberts [24] predicted that the instabilities we
caused by a resonant interaction between the numerically induced discrete waves.
used linearised eigenvalue analysis techniques to prove that the removal of certain n
could stabilise the system.

In this paper we formulate a semi-discrete solution system to learn how the spatial
cretisation affects the stability of linear gravity waves. The system evaluates a set of s
discrete equations relating the temporal derivative of the discrete valugstiog vector
potential, and, the surface elevation, and is of the form,

[¢b] =L[¢b]’ (1)

¢ It ¢

whereb indicates the values on the free-surface boundargpresents differentiation in
time, andL is a linear operator. Eigenvalueslofivhich contain a positive real component
indicate an unstable system. An example of the dependency of the stability on the sy
discretisation is shown in Fig. 1 where several meshes are shown with their correspor
eigenvalues. The meshes (a) to (c) are all locally symmetric, that is, all the elements o
free-surface have a vertical line of symmetry, though not necessarily globally symme
and have purely imaginary eigenvalues indicating stability, while the slightly asymme
mesh d is unstable as it has positive real eigenvalues. Some mechanisms to recc
stable solution are then investigated and are used in conjunction with a revised arbi
Lagrangian—Eulerian technique used by Ho [7] for spectral elements, and also widely
with finite element techniques [21], to solve non-linear free-surface flow.

In Section 2 we formulate the governing equations of a two-dimensional free-surf
system, including boundary conditions for an arbitrary frame of referencehhpectral
element formulation to solve the system is also derived. Section 3 describes the eigen
stability analysis mentioned above and gives results of the eigenvalues and eigenvectc
varying spatial discretisations. It also puts forward a number of mechanisms to countel
instability. Results for the simulation of linear and non-linear free-surface flows are sh
in Sections 4 and 5, respectively, along with error calculations and validation of our res
The conclusions to this work are given in Section 6.

2. INVISCID FREE-SURFACE GOVERNING EQUATIONS

We consider a Cartesian coordinate system, where the free-surface is describe
z=0, wherez points vertically upwards and the free-surface height can be represer
asz=1¢(x,t) asin Fig. 2.

As the fluid is irrotational, incompressible, and inviscid we can represent the velocity
the gradient of a potential such that

u= Ve, 2
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FIG. 1. Comparison of eigenvalues of spatially semi-discrete system for contrasting meshes.
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Von=V,

FIG. 2. Definition of frame of reference and wall boundary conditions for contained free-surface systern

and the system can be evaluated by solving the Laplacian
V3¢ =0, sinceV.u=0, )

supplemented by suitable boundary conditions.

2.1. Boundary Conditions
2.1.1. Eulerian boundary conditionsThe Eulerian momentum equation for the inviscic
free-surface is
VP

au
ﬁjL(u'V)u:_T’ 4)

and by substituting the following vector identity,
1 2
(u~V)u=§Vu —ux(Vxu, (5)
into EqQ. (4), while remembering x u=0 for irrotational flow andu = V¢, we are left
with

i 1 2 _
Vo 5V (Ve =

By integrating spatially and substitutirfg)= pg¢ (the excess pressure caused by a distu
bance) where describes the free-surface elevation argdc (x, t), we have the non-linear
Eulerian dynamic boundary condition,

¢

1
i -9 — §V¢ - Vo. (7

The kinematic boundary condition is formulated by considering that a particle on the fi
surface stays on the free-surface. Therefore

¢ dz

A 8

dz dt ®
and using Eg. (2) combined with the material derivative identity for a stationary frame
reference,

df  of

—_— = — -V T 9
dt 8t+u ’ ©
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wheref is a spatially and temporally dependent function, we have the non-linear Eulel
kinematic boundary condition

29 _ 9 290 (10)
0z ot~ 9x ax

2.1.2. Linearised boundary conditionsThe standard linearised version of the Eulerial
boundary conditions are obtained by considering small veloci¥es< 1) and eleva-
tion (g—f( « 1) and ignoring any product of these. The resulting boundary conditions .
therefore

9 _

9 8_§
9z at’ (12)

which are evaluated on= 0, or they can be combined to form one boundary conditic
for ¢,

92 9
W(f = —ga—j (13)

2.1.3. Boundary conditions in arbitrary reference framd&o change the frame of ref-
erence to an arbitrary one with velocity we substitute

¢
at

_9
= +w-Vo, (14)

into (7) and therefore have the dynamic boundary condition in an arbitrary frame of refere

¢

ot

=g + (w - ;wp) V. (15)

In the same way we formulate the kinematic boundary condition in an arbitrary frame
reference to be

d¢
VA

_9¢ (o N3
W_8t+<8x wx)ax’ (16)

wherewy is thex-component ofv. Generally the frame of reference moves with the free
surface in the direction andwy is either zero or equal tg‘ﬁ.

2.1.4. Wall boundary condition.The boundary conditions on the walls are such that
Vo -n=V,, 17)

whereV,, represents the velocity at the wall.
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2.2. hp/Spectral Element Formulation

To solve the system numerically we divide the two-dimensional fluid domain into fin
elements and represent the velocity potential in terms of a set of modal expansions w
vary with h, length of the elements, angl the polynomial order of the function, and a
corresponding set of coefficients. The velocity potential therefore takes the form

ndof

px¢’ =) GiN(x ), (18)

i=1

whereg is the exact solutionp? is the numerical approximation, and tieare the coeffi-
cients of the modal expansion ba$¢gx, y). To solve the Laplacian

VZp =0, (19)
we first splitg into its constituent parts,
V2 4+ V2P =0, (20)

whereg! represents the homogeneous value of the potential within the domain with :
Dirichlet boundary conditions, angi® are the known potential Dirichlet boundary con:
ditions. We then construct the weak form of the equation by multiplying (20) by a t
function,v?, and integrating over the domain. Following the Galerkin approach we set
test function to be of the same form as the approximation basis, i.e.,

ndof

U(s = Z ﬁ] N] (Xv y)v (21)

j=1
where the symbols have the same meaning as above. Equation (20) then becomes

/V2¢H5-vadQ—i—/VzcﬁDa-v‘sdQ:O, (22)
Q

Q

whereg2 is the area of the domain. Utilising Green’s Theorem the above equation beco

_/ V¢H8-Vv5dQ=/V¢D6~Vv8d9_/(v¢5'n)vsds (23)
Q 2 s

where S represents the boundary and the normal in the outward direction on the
boundary. Denoting

_ oo
ng-n_an, (24)

and by substituting in Egs. (18) and (21) we are left with

ndof d¢5
—/Zq“siHVNi ~VdeQ=/V¢D-VNj dQ— [ ——-N;dS  Vj, (25)
Q Q S dn

=1

where thed$S/an are the Neumann boundary condition. In matrix form this can be writt
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as
Lo =1, (26)

whereL andf are known and defined as

L[i, j] = —/ VN; - VN; dQ, (27)
Q
o b _ d¢S
f[j]_/QVd) .VN,olA—/S e -N;dS (28)
and
o"[i1= ol (29)

To solve for the unknowns we invdrtand multiply through, i.e.,

Pt =L M. (30)

To evaluate the kinematic boundary condition we need to extract the velocity of the fl
which requires taking the gradient of the velocity potential. A problem arises due to
modal basis being onl§, continuous across elements and therefore the velocity and fr
surface will be discontinuous. To recover the continuous velocity we follow a proced
set out in [34], which uses the Galerkin approach to evaluate a continuous velocity fiel
over the whole domain, i.e.,

ndof

/v¢.desz=/ZdN. N; dQ = /d N;dQ  Vj, (31)
Q

where [, N; - Nj d2 is the mass matrix. We used a modified version oftipkspectral
element\exT ar code [9, 25, 31, 32] to solve the free-surface flMexT ar is an
hp/spectral element code utilising a hierarchal expansion basis of modified Jacobi pol
mials of orderp. A typical set of two-dimensional modal expansions for a polynomial
order 4 can be seen in Fig. 3.

The computations are performed on a mesh with elements ofis@envergence can be
achieved either by decreasih@r increasingp according to the theoretical error, presente

p modes

h type geumetnc rm)]uhon

FIG. 3. Two-dimensional expansion modes up to polynomial order 4.
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FIG. 4. Symmetric mesh for stability analysis.

by [28], of

k) -1 —k—1
Iu— W lyag) < Ch¥ D p Dy g), (32)

whereu is the exact value of the function? is the discretised approximated functidris
the differentiability ofu, andu = min(k, p + 1).

3. STABILITY ANALYSIS OF SPATIAL DISCRETISATION

We start our analysis by considering two basic mesh configurations; the first is a st
tured, symmetric mesh, shown in Fig. 4, and the second a structured, asymmetric r
shown in Fig. 5. We want to recognise the differences between the solutions for these
ferent meshes in order to investigate how the computations were affected by the diffe
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FIG.5. Asymmetric mesh for stability analysis.
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FIG. 6. Time history of point of maximum displacement.

spatial discretisations. The motivation to investigate asymmetric meshes comes fron
wish to undertake non-linear flow solutions necessitating a moving mesh, which inevitz
introduces distortion to the grid. We hypothesise that whatever numerical effect a distc
grid has on linear flow, it will have a similar effect on non-linear flow. All symmetric an
asymmetric meshes used in this paper are of the same pattern as Figs. 4 and 5, re
tively, and shall be denoted by the number of elements on each side i.e., Fig. 4341010
symmetric mesh.

Using thehp/spectral element solver described in Section 3 the two meshes gave diffe
results for long time studies. The symmetric mesh was stable over long periods of tim
shown in Fig. 6, where we see the time history of a point on the free-surface for ove
time units at the point of maximum displacement.

The displacement, frequency, and wavelength are all constant and stability is achie
Unfortunately the asymmetric mesh became unstable after relatively few periods.
initial conditions of 01 cogx (x + 0.5)) the free-surface profiles for the symmetric anc
asymmetric mesh after approximately 2 periods is shown in Figs. 7 and 8, respecti
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FIG. 7. Symmetric mesh free-surface profile atT.14 s.
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FIG. 8. Asymmetric mesh free-surface profile a&11.14 s.

The asymmetric mesh exhibits the familiar saw tooth pattern previously seen by
investigators [14].

Changing the type or order of the temporal discretisation merely changed the time
at which the computations became unstable. Decreasing the time step for any given
poral discretisation had no effect on the stability of the problem. We therefore decide
investigate the effect of the spatial discretisation by developing a semi-discrete formule
of the problem reduced to the solution values on the free-surface boundary.

3.1. Formulation of Semi-discrete Eigenvalue and Eigenvector Analysis

In order to formulate a semi-discrete system to investigate the stability of the numel
problem we decompose the Laplacian into its interior and free-surface boundary cor
nents, i.e.,

C[Li Lin|[éi]
L¢_[Lbi Lbe%}_O’ 53)

where the subscrift refers to the degrees of freedom on the free-surface boundary
i refers to all remaining degrees of freedom. The first row of this system can be rearral
to obtain

Lii# + Lingpp = 0= ¢ = —Li'Linedp. (34)

Equation (34) therefore expresses the interior degrees of freedom in terms of the
surface boundary degrees of freedom. This is possible due to the elliptic nature of
Laplace equation. The differential ¢f in the z-direction can similarly be represented by
an operatob such that

_[DBii Dib | [ &
Dd)_{Dbi Dbe%} 59
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Considering the bottom line of Eq. (35) we find an expression for the differential on
boundary to be

0
£ = Dyi ¢ + Dby (36)

where%m is a vector of the values c%% on the free-surface. Substituting (34) into (36
we obtain a relationship for the differential in terms of the boundary values of the veloc
potential, i.e.,

9¢

92| = —DyiL i "Lib®b + Doo® = [Dob — Doilji*Lin| @ = Npohy, (37)
b

whereNp can be thought of as a discrete Dirichlet-Neumann operator. By combining (
with the linear free-surface boundary conditions

Bl0] _

T a¢, (38)
b0 _ ot 39
9z~ ot’

we can now form the semi-discrete form of the linear free-surface movement

%} [ 0 —d } {‘ﬁb}

= ) (40)

{ ¢l Np O ¢

The eigenvalues of the operating matrix dictate the stability of the scheme which imf
that we must find the eigenvalues, such that

[NOD —ngm =$ﬂ[f§:} (41)

where,, andn,, denote the eigenvectors. This system can be rearranged to form

S, —gn, =0, (42)
Np¥, — s, =0, (43)

and substituting Eq. (42) into Eq. (43) we obtain an equation for the eigenvalues of the
matrix in terms of those of the Neumann—Dirichlet operator matrix,

s7Im, + gNom, = 0. (44)
If we denote the eigenvalues and eigenvectoldpby u, anday, respectively, i.e.,
Npan = pnan, (45)
whereu,, is complex, then we obtain

Sﬁ = —ung, (46)
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or

Sn = i (1nQ)?. (47)

Therefore if we consider the general formaf, stating its phase and magnitude,

pn = |pnl€’, (48)

then
S = Fig?|un|2€? (49)
= 497 |unl2€ (3T3), (50)

If 6 =0 thenpu, is real and we have purely imaginagyeigenvalues, and the matrix systen
(40) will have a purely dispersive solution At 0 then the eigenvalues,, have a positive
and negative real component resulting in an unstable system. For stability of an invic
incompressible linear free-surface flow we require the eigenvalues of the matrix to be pt
imaginary. We can then conclude that any imaginary componeny ieads to instability,
caused by an asymmetry in thedirection of the computational mesh.

3.1.1. Validation of numerical implementatioriWe measure the accuracy of the numeit
ical implementation by comparing the analytical values of the system’s eigenvalues
the eigenvalues of the numerical system. System (40) can be represented analytically

0 —gl
<l 1l &
¢ It ktanhkh)y O ¢
wherek is the wavenumber artdthe height of the free-surface. The resulting eigenvalu
of this system are therefore

A = +(gktanhkh))Zi. (52)

The first analytical eigenvalue is representedt by = and has a value éf; = +5.541131.
Figure 9 shows the plot of the errar, between this analytical value and that produce

1 2 3 4 5 6 7 8 9 10 11 12 13
polynomial order

FIG. 9. First eigenvalue error for varying polynomial order,



38 ROBERTSON AND SHERWIN

A B e o L L R Ly L
0.1 02 03 04 05 060708091
log(h)

FIG. 10. First eigenvalue error for varying element sike,

computationally on a 2 2 symmetric mesh as the order of the expansippsicreases and
Fig. 10 shows the error as the size of the eleméntigcreases for similar shaped symmetri
meshes. Figure 9 shows that (egis proportional top and Fig. 10 that log) « log(h)
proving standardhp convergence.

3.2. Spatial Discretisation Comparison

Toillustrate the above analysis we consider the case ef 10symmetric and asymmetric
meshes. The spectral analysis was undertakentl2 and the corresponding eigenvalue:
and eigenvectors can be seen in Figs. 11-12. In Fig. 11 we see the eigenspectru
the symmetric and asymmetric meshes. The symmetric eigenspectrum clearly indi
a stable solution while the solution for the asymmetric mesh is unstable. The first t
corresponding eigenvectors in termsofre shown in Fig. 12. We note the sinusoida
form of the eigenvectors corresponding to the analytical solution. The asymmetric m
however, leads to a set of asymmetric eigenvectors biased in the same direction a
free-surface elements of the asymmetric mesh.
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FIG. 11. Eigenvalues indicating stability for symmetric mesh (left) and eigenvalues indicating instability |
asymmetric mesh.



FREE-SURFACE FLOWS 39

oaf o3f

el n [ I ST R . L PR S S [ TR TR SR T [T S S R
-05 -0.25 0 0.25 (X -0.5 -0.25 [] 0.25 0.5
x

FIG. 12. First three eigenvectors in terms of frequency for symmetric (left) and asymmetric mesh.

3.3. Mechanisms for Stability

We have seen that symmetric and deformed meshes play an important partin free-st
computations therefore we need a mechanism to numerically enforce the stability of
computations.

3.3.1. Removal of high modeswWe follow a procedure proposed by both Moore [15] an
Roberts [24], who theorised that the incorrect phase relation of the discretised system
to a resonance with the lower frequency causing the instability for the non-linear probl
To remove the instability they removed the higher modes ahg methods we can apply a
similar technique. The higher modes are simply removed by zeroing the coefficients o
highest frequency modal shape functions. Figure 14 shows the resulting purely imagi
eigenvalues for computations using polynomial order 2 with the removal of the higt
mode after differentiation. Compare this to Fig. 13 which shows the eigenvalues witt
removal of modes.

Unfortunately as the original polynomial order increases more modes have to be rem
to enforce stability resulting in very expensive calculations for high accuracy solutions

3.3.2. Addition of a diffusive term Artificial diffusion is commonly used in compres-
sible flow simulation to remove numerical instabilities and is attractive in finite eleme
methods due to the ease with which it can be implemented. To this end we consider ac
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FIG. 13. Eigenvalues for asymmetric mesh with no mode removal.
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FIG. 14. Eigenvalues for asymmetric mesh with removal of highest mode.

a diffusive term to the kinematic boundary condition to enforce stability. The kinema
boundary condition then becomes
9 ¢ . 0%

— = tu

= —, 53
ot 0z ax2 (53)

wherep is a constant dependent upon the discretisation propéintign. We denot@iritical

or uc as the lowest value gf which produces a stable solution. This added term has t
benefit of diffusing high frequency displacements of the free-surface, i.e., the saw-tc
effect, but unfortunately also damps the entire system. The resulting eigenvalues o
semi-discrete system with a polynomial expansion basis of order 2 aa® x 10~ eval-
uated on an asymmetric mesh (Fig. 5) are shown in Fig. 15. All the real parts are non-pos
indicating stability.

Before we can assess the relationship betweeh, p, and the asymmetry of the mesh,
we must first mathematically quantify the meaning of mesh asymmetry or skewness
represent the size of an elementHyythe length of the element’s side on the free-surfac
We also need to formulate a characteristic length representing the amount of skew
of an element. Figure 19 shows a typical skewed element illustrating the lengttich

Imaginary

32 -30 -28 -26 -24 -22 -20 -18 -16 -14 11210 -8 -6 -4 -2 O
Real

FIG. 15. Eigenvalues for asymmetric mesh with added diffusion term.
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represents the salient asymmetry of our problem. We denote line AB as the vertical
vector,e,, and the line CD as the intercept of the centre of the element’s free-surface
and its interior vertex. The angteis the angle between these two lines. If the coordinat:
of the vertices are denoted {4, X1, andXs, whereX; = (x;, y;) then

AB =g, (54)
X1 + X +
CDh = X3 — ! 2 &+ |Y3— " y2 €, (55)
2 2
and
AB x CD
CD|sinf = ———. 56
CDIsing = — = (56)

We can therefore represent the characteristic length of the skewness of an eterasnt,
o =AB x CD (57)
and the non-dimensionalised skewness of an elemeng

K =

(o2
e (58)
Figure 16 shows the valuesof for varying values o . Wheno = 0 we have an symmetric
mesh and as increases the asymmetry of the mesh increases, agidoésan be seen that
the data almost collapses to a single curve purely dependentionust be remembered that
although the figure seems to indicate non-dependenhyfonsimilar shaped meshdsand

o are proportional, i.ex = constant. We believe the dependence of the solution’s stabil
onthe skewness of an element, with respect to the vertical, comes from the dependence
kinematic boundary condition on the accurate solutio%%ofA largely skewed element will
not accurately evaluate this derivative for at least one of its free-surface vertices. Figur
shows the value ofi. for increasing values op performed on Xk 1,2 x 2, and 4x 4
asymmetric meshes corresponding to element $ize4.0, h=0.5, andh =0.25. u. was
evaluated by finding the lowest possible valug.pfo 8 decimal places, which gave purely

0.01 L

0.008 L

o002

ORI [T SO TS WO [N TN SO T Y SO SO T PR
0.025 0.05 0.075 0.1
lsl

FIG. 16. u. forincreasings and varyingh with p=2.
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FIG. 17. u. for varying order of expansion basis where h represents the size of the element edge ot
free-surface.

imaginary eigenvalues. A relationship of the form (ag) o p is apparent. We therefore
hypothesise that the relationship is of the form

e = Co®P, (59)

wherea andC are positive constants. To test this theory we measured the vajuefof
increasingos on a 5x 5 mesh for differing values op. The results are shown in Fig. 18
and support our hypothesis as {pg) o« log(|o|) with the steepness of the lines increasin
with p. By utilising the information contained in Figs. 17 and 18,can be numerically
bounded by takin@ asl—l0 andw as 0.2. Equation (59) is consistent with the requireme
that uc — 0 upon convergence. Further more it is consistent withhihepectral element
approximation such that. should decay als*P aso is proportional tch for different sizes
of similar shaped elements.

This procedure is only valid if the accuracy of the solution behaves identically as bef
i.e.,e oc hP. The numerical validation of this can be seen in Figs. 21 and 22 where the e
of the first eigenvalue is plotted against increagirgndh, respectively. In Fig. 21 mesh a

0434 —
log(lal)

M .
0.08

FIG. 18. pu. forincreasings and varyingp with h=0.2.
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14 Ly
10 4 6
polynomial order

FIG. 21. First eigenvalue error for varying order of expansion basifer0.2.

is a 5x 5 symmetric mesh while meshes b to e refer to those in Fig. 20. Figure 22 illustrz
the rate of convergence, which is consistent vhihconvergence, i.e., ldg) o log(h). It
can be seen in both figures that the rate of convergence is proportional to the skewne
the mesh, with a distorted mesh undergoing slower convergence.

4. LINEAR FREE-SURFACE FLOW

Having developed a stability enforcing mechanism we investigate the accuracy of
unsteady code. A 12 10 symmetrical mesh was used (Fig. 23) for the computations a
the error was evaluated by comparing the computational results with the theoretical solt

¢ = Acoshky) cogwt) cogkx), (60)

whereh is the height of the free-surfack,is the wavenumbery is the frequency of the
oscillations, and

w? = gktanhk). (61)

10*

log(e)

o*

KE 025 03
log(h)

FIG. 22. First eigenvalue error for varying order of element sizeges 4.
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FIG. 23. Symmetric mesh used for linear free-surface computations.

The initial conditions were
c=0 (62)
and
¢ = Acoshky) cogkx) onz=0, (63)

where A determines the amplitude of the free-surface motion. In Fig. 24 we see the til
history of a particle on the free-surface which experiences the maximum displacemer
increasing order of expansion basis. The initial condition kvasr and A was chosen so
that the maximum displacement is approximately 0.1, as shown in Fig. 24.

The phase error whep=1, i.e., when we are using a linear expansion basis, can clec
be seen in Fig. 24, as can the rapid convergence of the computation when the order ¢
basis increasegqy = 3 andp =5 are indistinguishable from each other. TH&error plots
shown in Figs. 25 and 26 demonstrate that{4ogx p and loge) ~ 2log(At) as expected
since we used a second order time integration scheme to discretise the combined
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105 H
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;-

0.925
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Time

FIG. 24. Time history of particle for linear flow.
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FIG. 25. Error convergence for increasing polynomial order.

boundary condition (13) such that

N+l _ gpn 4 pn-1 9
’ Aqiz ’ Z_gé' ©9

5. NON-LINEAR FREE-SURFACE FLOW

The non-linear flow was numerically simulated using a fully Lagrangian version of t
dynamic and kinematic boundary conditions, i.e.,

de 1
— =—-gz+=V¢ -V 65
at 92+ 5V - Ve, (65)
d¢p  dx
¢ _=22 66
ox  dt (66)
o¢p dz
9 _ 2 67
0z dt ©n
ul
102} o
104
E 107 [
E
B 10°
10.|ﬂ_
.
log (time)

FIG. 26. Error convergence for decreasing.
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To enforce stability we introduce a diffusive term into the kinematic boundary conditiol
dz 9¢ 9%z
— =4+ nw—.
dt 9z 9x2
The mesh must be updated each time step so that it contains the entire fluid domair
ensure this by solving two Laplacian equations of the form

(68)

VX =0, (69)
vz =0, (70)

where the Dirichlet boundary conditions were applied usingxhend y values of the
nodal points on the boundary. The nodal points on the free-surface were obtained
the Lagrangian motion of the fluid. The side wall nodal points are then linearly adjus
according to the motion of the fluid when in comes into contact with the walls, wh
the bottom walls nodes are stationary. To ensure the accuracy of the model we tes
computational results against other analytical and computational results.

The first comparison is made with second order analytical results developed by Wu
Eatock Taylor [34]. An equation is formulated to calculate the valuge af any time for
sloshing in a rectangular box. The computations were performed for a box of leng
and depth 1 with an initial maximum displacement of 0.1 and polynomial order 2. T
mesh in its initial state is shown in Fig. 27 and the comparison between the analytical
computational results shown in Fig. 28.

The two results are in good agreement and as Wu and Eatock Taylor suggest the dis
ancies can be attributed to the fact that the analytical results are only second order, \
the computations take into consideration higher order effects. The non-linear wave pr
of this motion can be seen in Fig. 29.

The next comparison is between qualitative analytical data derived by Wu [33]. -
results concern a submerged cylinder undergoing sinusoidal horizontal and vertical mc
He hypothesises that the frequency of the vertical force on a submerged cylinder under
horizontal motion is twice that of the horizontal force. The domain was meshed usir
finite element meshing code call&&ELISA [18, 19]; a close up of the mesh around the

1
s ' = =
s SIS S
00 ] = <
0.2
0 _U I I 0!5 ' I ' ‘ 1!5

X

FIG. 27. Initial conditions and mesh used for non-linear sloshing.
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FIG. 28. Computational and analytical time history of particle for non-linear flow.

cylinder can be seen in Fig. 31. The domain is 100 units in length and 2 in depth. The ra
of the cylinder i = 0.5 and its centre is submerged by 0.75, identical to the setup use«
[35]. The maximum displacement jsand the wave-frequency was 1. Figure 30 illustrate
the frequency doubling and Fig. 32 shows the free surface profile at tin@ dnd T=9.

Further correlation is sought by investigating wave motion contained within a box wh
is undergoing sinusoidal translational motion. Faltinsen [3] formulated a linear solution
this motion and we use the same case studies ieWslli [36] to test the computations. The
free-surface positiort, is calculated using

¢ =0+ (71)
where
= g (sz +) Chow sinknx> sinwt (72)
n=0
__éi o+ 1) sink.x sinwpt (73)
f2= g R L @n

FIG. 29. Time history of fluid surface for Lagrangian flow for comparison with Wu and Eatock Taylor
analytical scheme witlp = 3.
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and

=21 (74)
L

w? = gk, tanhk,d (75)
4 (-1n

3

Hh=o*T (76)
Hn

Ch= . 77

T w2 — w2 (77

L andd are the length and breadth of the tank and are bothi&.the wave frequency of
the forced oscillations which are described by

X = acoswt, (78)

wherea is 0.002 so the motion is largely linear. The computations were undertaken c
10 x 10 symmetric mesh.

The wy, are the natural frequencies of the motion anaifs equal to one of them
the displacement will reach infinity. The motion is primarily driven by the first natur
frequency,wp, and the driven frequency,. The difference between these frequencie
defines the wave envelope. We attempted four simulations, one £608.5414vg, ® =
0.9wg, @ = 1.1wg, andw = 0.99%g. Figure 33 shows the analytical and computational re
sults forw = 0.54140g and very good agreement is seen. Figures 34 and 35 are close tc
resonant frequency and therefore the amplitude of the wave grows much larger. Agree
is still very good especially close to start up, though as the amplitude grows non-lir
characteristics of higher peaks and troughs are shown by the computational results, v
are missed be the linear analysis. These effects are even more apparent in Fig. 36 \
the forcing frequency is almost identical to the first natural frequency and the amplit
increases greatly.

Analytical

0 5 10 1§ 20
time

FIG. 33. w=0.5414u,.
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6. CONCLUSIONS

In this paper we have computationally simulated linear and non-linear free-surface fl
using anhp/spectral technique. A semi-discrete system was formulated to investigate
stability of the spatial discretisation used in the linear computations. It was found tha
asymmetric mesh was inherently unstable, while a symmetric mesh was stable anc
this instability was attributed to the dispersive nature of the discrete Neumann-Diric
operator associated with the asymmetric mesh. Mechanisms to enforce stability wer
fined and tested and investigation suggested that the addition of a diffusive term in
kinematic boundary condition, where the coefficient is consistent withphepectral ap-
proach and takes into account the skewness of the mesh with regard to the symmetry of
elements, was suitable. These findings were then used to simulate non-linear free-st
flow for different conditions. The results were validated by comparing them to qualitat
and quantitative results for sloshing, translational movement of a submerged cylinder,
for translational forced oscillations of the containing tank. Future work will involve tt
investigation of viscous free-surface flows.
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